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Abstract. The(0+1)-dimensional field theory of Dirac fermions coupled to an external Abelian
gauge field is quantized in the path integral formalism. The imaginary part of the effective action,
which has many features in common with the (2+ 1)-dimensional effective action, is the sum
of a Z2-violating Chern–Simons term plus a certainZ2-preserving and nonanalytic term related
to the integer part of the Chern–Simons action. The effective coupling constant of the theory
can be any real number depending on the regularization scheme. The physical origin of theZ2

anomaly in odd-dimensional gauge theories is analysed from a nonperturbative point of view.

1. Introduction

One of the most important features of the quantization of Dirac fermions in (2+ 1)-
dimensional gauge theories is the appearance of the parity anomaly [1–5]. Properly speaking,
a parity transformation of the gauge fieldAµ(t,x) in 2+1 dimensions is defined by means of
the transformationAµ(t,x) −→ (A0(t,±x1,∓x2),±A1(t,±x1,∓x2),∓A2(t,±x1,∓x2)).
However, very often, ‘parity transformation’ is used in the literature for a different
Z2 symmetry [6–8]: the reflection symmetry, defined byAµ(t,x) −→ −Aµ(−t,−x).
Therefore, although we should distinguish between parity and reflection symmetry, both are
usually referred to as ‘parity symmetry’. Obviously, the term becomes inadequate for 0+1
dimensions and in what follows, we shall distinguish clearly between these two symmetries.

The effective action generated by the integration of the massless fermionic degrees of
freedom in (2+ 1)-dimensional gauge theories defined over a three-dimensional compact
manifoldM is given by [1–8]

Im0(A) = keff(−iSCS(A)+ 2πh[A]) (1)

whereSCS(A) is the (2+ 1)-dimensional Chern–Simons term

SCS(A) ≡ i

4π

∫
M

Tr(A ∧ dA+ 2
3A ∧ A ∧ A)

and h[A] is a certain nonanalytic function of the gauge fieldA : M −→ Lie algebra of
U(1) or SU(N). However, the literature [1–6], and especially the recent literature [7–9, 11],
about the quantization of (2+ 1)-dimensional Dirac fermions contains heterogeneous and
sometimes contradictory information. The major controversy is related to the value ofkeff,
which may depend on the regularization method prescribed for its calculation. In the non-
Abelian case, some authors obtain [1–3]keff = ± 1

2, whereaskeff = p/2 is obtained in [8],
wherep may be any integer number. Moreover, in [7] it is argued thatkeff may be any
real number depending on the parameters of the regularization. The controversy is similar
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in the Abelian case [4, 9]. As a consequence, some authors propose the absence of parity
(and reflection) anomaly in the theory [7–9].

On one hand, the Chern–Simons action is antisymmetric under a reflection
transformation and, under a gauge transformationg : M −→ SU(N) of the gauge field,
A −→ Ag = g−1Ag − ig−1 dg,

SCS(A)→ SCS(A
g) = SCS(A)− 2nπ i (2)

wheren is the winding number ofg. On the other hand, although the explicit form ofh[A]
is unknown, some properties of this term are well established [2, 7]. It is integer and jumps
±1 when, for varyingA, one eigenvalue of the Dirac operator vanishes. Moreover, the
gauge and reflection transformations ofh[A] are given by

h[Ag] = h[A] + n (3)

and

h[−A] = −h[A] = h[A] ± 2|h[A]| (4)

respectively. Therefore, using (2)–(4) we see that exp Im0(A) is gauge invariant, but not
reflection invariant.

The Chern–Simons term may be obtained by means of perturbation theory, but the
term h[A] is not generated radiatively. The existence and physical origin of a termh[A]
verifying the above properties has been shown by Redlich in [2] by using the Atiyah–Singer
theorem in 3+ 1 dimensions. The necessity of the presence of this term in the imaginary
part of the effective non-Abelian action has been also argued in [7] in order to assure the
gauge invariance of exp0(A), but the explicit form and physical origin of the termh[A] is
unknown. The purpose of this paper is to calculate explicitly the (0+ 1)-dimensional term
h[A], compare the ambiguities of the (0+ 1)-dimensional coefficientkeff with those of the
(2+ 1)-dimensional one and analyse the physical origin of the reflection anomaly in odd
dimensions. The aim of this study is to shed some light on the possible realizations of the
more physically interesting (2+1)-dimensionalh[A] term and on the physical origin of the
discrete anomalies.

In the next section, the effective action generated by the integration of Dirac fermions
interacting with an Abelian gauge field and defined in a (0+ 1)-dimensional compact
manifold is calculated exactly by means of a standard Pauli–Villars regularization. The
nonanalytic termh[A] is obtained explicitly. In section 3, the ambiguities inkeff are analysed
by means of a generalization of the Pauli–Villars scheme. In section 4 a physical explanation
about the origin of the reflection anomaly in 0+1 dimensions (in odd dimensions in general)
is proposed. Some conclusions and a few comments are postponed to section 5.

2. The model: Dirac fermions in the circle

Consider a (0+1)-dimensional system [12] of massless fermions interacting with an Abelian
gauge field at finite timeT (finite temperature). The classical interaction action of this
system is given by

S(A,ψ∗, ψ) ≡
∫ T

−T
ψ∗(t)

(
−i

d

dt
+ A(t)

)
ψ(t) dt (5)

whereA(t) : ST −→ R is the gauge field andψ(t) : ST −→ C is the fermion field†. The
gauge field verifies periodic boundary conditions,A(t + 2T ) = A(t) whereas the fermion
field verifies antiperiodic boundary conditions,ψ(t + 2T ) = −ψ(t).
† By ST we mean the circle of length 2T .
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The quantum effects of the fermions on the gauge field are encoded in the effective
action0(A). It is defined by means of the integration of the fermionic degrees of freedom
and normalized to 1 forA = 0,

e0(A) ≡
∫
δψ∗δψe−S(A,ψ

∗,ψ)∫
δψ∗δψe−S(0,ψ∗,ψ)

= det[−i d
dt + A(t)]

det[−i d
dt ]

(6)

where
∫
δψ∗δψ means that the integrand e−S(A,ψ

∗,ψ) must be integrated over all the fields
ψ∗ andψ verifying the antiperiodic boundary conditions mentioned above.

Therefore, in order to calculate the effective action0(A), we need to know the
eigenvalues of the (0+ 1)-dimensional Dirac operator−i d

dt + A(t). It is well known
that the eigenvalues of this operator acting on fermions defined over the circleST are
λk(ε) ≡ π(k + ε + 1

2)/T , k ∈ Z, whereε is the (0+ 1)-dimensional Chern–Simons action,

ε ≡ 1

2π

∫ T

−T
A(t) dt.

Insertingλk(ε) into the right-hand side of (6) we verify that this expression is divergent.
Therefore, we must introduce a regularization scheme. In order to explore possible
ambiguities inkeff we must consider a very general regularization scheme, but this is
postponed to the next section. Now, in order to better understand the origin of the
nonanalytic termh[A], we introduce a standard Pauli–Villars regularization,

e0(A) = lim
M→∞

det[−i d
dt + A(t)]

det[−i d
dt ]

det[−i d
dt + iM]

det[−i d
dt + A(t)+ iM]

= lim
M→∞

∏
k∈Z

[
k + ε + 1

2

k + 1
2

][
k + ε + 1

2 + iM

k + 1
2 + iM

]−1

= lim
M→∞

[
(2ε + 1)

∞∏
k=1

(
1+ ε

k + 1
2

)(
1− ε

k − 1
2

)]

×
[ ∞∏
k=1

(
1+ ε

k + 1
2 + iM

)(
1− ε

k − 1
2 − iM

)]−1

. (7)

Duneet al [12] have computed the second quotient of determinants in the first line of the
above equation for arbitraryM. The limitsM → 0 andM →∞ of that calculation imply
that the first bracket in the right-hand side of (7) equals cos(−πε), whereas the second one
equals e−iπε +O(M−1). Therefore,

e0(A) = | cos(πε)|(−1)Int(ε+ 1
2 )(−1)−ε (8)

and the imaginary part of the effective action reads

Im0(A) = π(−ε + Int(ε + 1
2)). (9)

We can identify clearly here the explicit (0+ 1)-dimensional form of the nonanalytic term
h[A]. It is given by

h[A] = Int(ε + 1
2). (10)

It has been generated by the determinant of the physical Dirac fermion and obviously, it
cannot be found by means of a perturbative expansion inε. Under a gauge transformation
eiφ(t) : ST −→ U(1) of winding numbern, ε −→ ε+n and under a reflection transformation,
ε −→ −ε. Therefore, the term Int(ε + 1

2) verifies all the properties mentioned in the
introduction for the (2+ 1)-dimensional case: it is integer, transforms under a gauge
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transformation in the form (3), under a parity transformation in the form (4) and jumps
one unity when, for varyingε, one eigenvaluek + ε + 1

2 vanishes. The other term of the
right-hand side of the above equation is just the Chern–Simons action multiplied by−π
and was generated by the Pauli–Villars determinant. It can be easily verified that this term
is just what we obtain in perturbation theory. Therefore, as well as in 2+ 1 dimensions,
the radiative corrections only pick up the Chern–Simons term of Im0(A). Nevertheless,
the imaginary part (9) of the (0+ 1)-dimensional effective action agrees with the (2+ 1)-
dimensional non-Abelian one if we change−ε + Int(ε + 1

2) by its (2+ 1)-dimensional
partner−(i/2π)SCS(A) + h[A] (keff = 1

2 in the non-Abelian case for (2+ 1)-dimensional
Pauli–Villars regularizations).

3. Ambiguities in the reflection anomaly

In order to analyse the ambiguities in the (0+ 1)-dimensional coefficientkeff, we consider
now the regularization method introduced in [7]. This scheme has shown the ambiguities in
the (2+ 1)-dimensional coefficientkeff, generalizing the results obtained by other methods
[1–6, 8–9, 11]. It is a gauge invariant generalization of the Pauli–Villars scheme that contains
not only pseudoscalar couplings between the fermions and the gauge field, but also scalar
couplings. This is achieved by means of high derivatives. In 0+ 1 dimensions it reads,

e0(A) = lim
M→∞

N∏
j=0

detsj
[
dA + iλj

d2
A

M

(
1+ d2

A

M2

)nj + iµjM
]

detsj
[
d0+ iλj

d2
0
M

(
1+ d2

0
M2

)nj + iµjM
] (11)

where we have denoted

dA = −i
d

dt
+ A(t).

s0 = 1, sj = ±1 for j = 1, 2, . . . , N , 2nj are integer numbers andλj and µj are real
numbers withµ0 = 0. In order to assure that (11) is a true regularization, we must
find the Pauli–Villars conditions that make0(A) finite for finite M. All the determinants
involved in the regularization (11) are formally gauge invariant, therefore, as in standard
Pauli–Villars regularizations, finiteness of every couple of quotients in the above formula
is enough to guarantee gauge invariance. It is assured by choosingN odd andsj = (−1)j ,
j = 0, 1, . . . , N . If we denote by3j(k + ε + 1

2) the eigenvalues of the operator
dA + iλj (1+ d2

A/M
2)nj d2

A/M + iµjM,

3j(k) ≡ π

T

[
k + i

λjk
2

M

(
1+ k2

M2

)nj
+ iµjM

]
(12)

and each consecutive couple of quotients of determinants in (11) may be written

det[dA + iλj (1+ d2
A/M

2)nj d2
A/M + iµjM]

det[d0+ iλj (1+ d2
0/M

2)nj d2
0/M + iµjM]

× det[d0+ iλj+1(1+ d2
0/M

2)nj+1d2
0/M + iµj+1M]

det[dA + iλj+1(1+ d2
A/M

2)nj+1d2
A/M + iµj+1M]

=
∏
k∈Z

3j (k + ε + 1
2)

3j (k + 1
2)

3j+1(k + 1
2)

3j+1(k + ε + 1
2)

=
∏
k∈Z

3j (k + Frac(ε + 1
2))

3j (k + 1
2)

3j+1(k + 1
2)

3j+1(k + Frac(ε + 1
2))
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≡ lim
L→∞

L∏
k=−L

3j (k + Frac(ε + 1
2))

3j (k + 1
2)

3j+1(k + 1
2)

3j+1(k + Frac(ε + 1
2))
. (13)

In the last equality we have splitε + 1
2 into its integer and fractional parts,ε + 1

2 =
Int(ε + 1

2) + Frac(ε + 1
2). Therefore, the contribution of every one of these couple of

quotients to the imaginary part of the effective action0(A) is given by

Im log

{
det[dA + iλj (1+ d2

A/M
2)nj d2

A/M + iµjM]

det[d0+ iλj (1+ d2
0/M

2)nj d2
0/M + iµjM]

× det[d0+ iλj+1(1+ d2
0/M

2)nj+1d2
0/M + iµj+1M]

det[dA + iλj+1(1+ d2
A/M

2)nj+1d2
A/M + iµj+1M]

}
= lim

L→∞
[0j (L)− 0j+1(L)]

where

0j (L) =
L∑

k=−L

[
tan−1

(
Im3j(k + Frac(ε + 1

2))

Re3j(k + Frac(ε + 1
2))

)
− tan−1

(
Im3j(k + 1

2)

Re3j(k + 1
2)

)]
(14)

and

Im3j(k)

Re3j(k)
= λj (k/M)

2(1+ (k/M)2)nj + µj
k/M

.

For largeM, we can substitute the discrete variablek/M by a continuum variablex and
the summation in (14) byM times an integral inx,

0j (L) = M
{∫ −1+Frac(ε+ 1

2 )

M

−L+Frac(ε+ 1
2 )

M

+
∫ L+Frac(ε+ 1

2 )

M

Frac(ε+ 1
2 )

M

−
∫ −1/2

M

−L+ 1
2

M

−
∫ L+ 1

2
M

1/2
M

}
× tan−1

(
Im3j(x)

Re3j(x)

)
dx +O(M−1)

=
[

tan−1

(
Im3j(L)

Re3j(L)

)
− tan−1

(
Im3j(−L)
Re3j(−L)

)
− tan−1

(
Im3j(0+)
Re3j(0+)

)
+ tan−1

(
Im3j(0−)
Re3j(0−)

)]
(Frac(ε + 1

2)− 1
2)+O(M−1)

= πkj (Frac(ε + 1
2)− 1

2)+O(L−1,M−1)

where

kj =
{
θj + µj/|µj | if µj 6= 0

θj if µj = 0
(15)

θj =


λj/|λj | if nj > − 1

2 andλj 6= 0

(2/π) tan−1(λj ) if nj = − 1
2

0 if nj < − 1
2 or λj = 0

(16)

and we have chosen tan−1(λj ) ∈ (−π/2, π/2]. Then, the quotient (13) of thej th and
(j + 1)th determinants contributes to the imaginary part of0(A) with the term

π(kj+1− kj )(−ε + Int(ε + 1
2)).

It can be easily verified that the term−π(kj+1− kj )ε is just what we obtain in perturbation
theory. Radiative corrections only pick up the Chern–Simons term of Im0(A). The term
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π(kj+1 − kj )Int(ε + 1
2) is a purely nonperturbative effect. Collecting all the contributions

of these couples of determinants we obtain

Im0(A) = keffπ(−ε + Int(ε + 1
2)) (17)

where

keff = −θ0−
N∑
j=1

(−1)j
(
µj

|µj | + θj
)
. (18)

This (0+ 1)-dimensional coefficientkeff equals the (2+ 1)-dimensional one in equation (1)
obtained in [7]. Therefore, the ambiguities in the (0+1)-dimensional reflection anomaly are
the same as the ambiguities in the (2+ 1)-dimensional parity anomaly.

For N = 1 andλ0 = λ1 = 0 we obtain the standard Pauli–Villars resultkeff = ±1
obtained also in 2+ 1 dimensions in [2] in the Abelian case (keff = ± 1

2 in the non-Abelian
case). It is obtained also in 2+ 1 dimensions in [3–5] by usingη-function regularization
and in [11] by usingζ -function regularization.

For arbitraryN andnj 6= − 1
2 we obtain thatkeff may be any odd number. This result

is also obtained in 2+ 1 dimensions in [8] by using several Pauli–Villars fields and in [6]
in the lattice.

If some nj = − 1
2, we obtain thatkeff may be any real number, even 0.keff = 0 is

also obtained in 2+1 dimensions in [9] by using an infinite number of Pauli–Villars fields.
Nevertheless, regularization (11) with somenj = − 1

2 or the infinite Pauli–Villars scheme
proposed in [9] are nonlocal regularizations. Then, when using these regularizations, the
absence of undesirable nonphysical effects such as nonunitarity should be yet analysed
before talking about absence of parity or reflection anomaly.

4. Physical origin of the reflection anomaly

In order to analyse the physical origin of the (0+ 1)-dimensional reflection anomaly and,
in general, the reflection anomaly in odd dimensions, we must compare the classical and
quantum symmetries of the theory.

The classical action (5) is invariant under a reflection transformation,

A(t) −→ AT (t) = −A(−t)
ψ −→ ψT (t) = ψ(−t)
ψ∗ −→ ψ

∗T (t) = −ψ∗(−t)
and under aU(1)-gauge transformation eiφ(t),

A −→ Aφ = A+ dφ

dt
ψ −→ ψφ = e−iφψ

ψ∗ −→ ψ∗φ = eiφψ∗.

Using the invariance of the action (5) under these transformations, we may deduce from
the functional integral definition of0(A) in (6) the formal identities

e0(A
φ) = e0(A) (19)

and

e0(A
T ) = e0(A). (20)
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However, ε −→ −ε under a parity transformation andε −→ ε + n under a gauge
transformation of winding numbern. Therefore, the explicit calculations of0(A) in (8) or
Im0(A) in (17) show that the identity (19) is not only formal, but true. In contrast, the
identity (20) is no longer valid and this fact constitutes the reflection anomaly.

Responsibility for the anomaly is often attributed to the regularization. Certainly, the true
properties of the quantum theory may depend on the regularization prescription introduced
to properly define the theory and may not coincide with the formal properties deduced before
introducing the regularization. This is just what happens here and is argued more precisely
in the following way. The quantum action defined in (6) has not a precise sense because
it is divergent and therefore, the identities (19) and (20) are nothing but formal properties.
The effective action is properly defined in (11) once the regularization (generalized Pauli–
Villars) has been introduced (standard Pauli–Villars regularization (7) is a particular case
with N = 1, µ1 = 1 andλ0 = λ1 = 0). Formula (11) may also be written in the form

e0(A) = lim
M→∞

∫
δψ∗δψ5N

j=1δχ
∗
j δχje

−S0(A,ψ
∗,ψ)−∑N

j=1(−1)j Sj (A,χ∗j ,χj )∫
δψ∗δψ5N

j=1δχ
∗
j δχje

−S0(0,ψ∗,ψ)−
∑N
j=1(−1)j Sj (0,χ∗j ,χj )

where

S0(A,ψ
∗, ψ) =

∫ T

−T
ψ∗(t)

[
dA + iλ0

d2
A

M

(
1+ d2

A

M2

)n0
]
ψ(t) dt (21)

is a generalization of the interactionS(A,ψ∗, ψ) between the gauge fieldA and the fermion
field ψ and

Sj (A, χ
∗
j , χj ) =

∫ T

−T
χ∗j (t)

[
dA + iλj

d2
A

M

(
1+ d2

A

M2

)nj
+ iµjM

]
χj (t) dt (22)

is a generalization of the classical Pauli–Villars interaction action between the gauge
field and a heavy ghost fermionχj (t) of large massM. Actions S0(A,ψ

∗, ψ) and
Sj (A, χ

∗
j , χj ) are gauge invariant, but not reflection invariant: the terms iµjMχ

∗
j χj ,

iλ0ψd
2
A(1 + d2

A/M
2)n0ψ/M and iλjχjd2

A(1 + d2
A/M

2)nj χj /M spoil the formal reflection
symmetry (20) of the theory.

Therefore, under this point of view, the anomaly is an ultraviolet effect: the high modes
(π(k+ε+ 1

2)/T for k large) of the spectrum make the determinant of the operator−i d
dt+A(t)

divergent and the ghost modes3±1
j (k + ε + 1

2) are introduced to attenuate this ultraviolet
behaviour. The price to pay is that the ghost modes spoil the reflection symmetry.

However, we can argue that the reflection anomaly is an intrinsic property of the pure
(0+ 1)-dimensional physical theory. For that purpose we just need to study the behaviour
under gauge and reflection transformations of the spectrum{λk(A) ≡ π(k+ε+ 1

2)/T , k ∈ Z}
of the operator−i d

dt + A(t) defining0(A) in (6). This spectrum is represented in the left
vertical line of figure 1 for a genericε (for a generic gauge fieldA(t)).

Under a gauge transformation eiφ(t) of winding numbern, the Chern–Simons termε(A)
transforms intoε(A)+ n. Then, the only effect of the gauge transformation is a shift ofn

positions in the eigenvalues,{π(k + ε + 1
2)/T , k ∈ Z} −→ {π(k + ε + 1

2 + n)/T , k ∈ Z}
and therefore, the spectrum of the operator−i d

dt + A(t) remains invariant (the movement
of the eigenvalues for the particular case ofn = 2 is represented in figure 1). Hence, the
determinant of−i d

dt + A(t) in formula (6) should be gauge invariant and in fact, the final
calculation (8) is gauge invariant.

On the other hand, under a reflection transformation,ε(A) −→ −ε(A), the spectrum
transforms in the form{π(k + ε + 1

2)/T , k ∈ Z} −→ {π(k − ε + 1
2)/T , k ∈ Z}. Therefore,
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Figure 1. The spectrum of the operator−i d
dt + A(t) is shifted n positions under a gauge

transformation of winding numbern. This picture shows the spectrum transformation forn = 2.

Figure 2. The spectrum of the operator−i d
dt + A(t) is reflection invariant only for integer or

half-integer values ofε for which the spectrum is symmetric with respect to the origin. These
figures represent the spectrum evolution forε = − 3

2 andε = −1 respectively whenε −→ −ε.

the effect of the reflection transformation is a shift of the eigenvalues a quantity 2πε/T .
Then, the spectrum is not invariant under this transformation, unlessε is an integer or
half-integer number (the transformation of the spectrum for the particular cases ofε = − 3

2
andε = −1 is represented in figure 2). Then, the product of these eigenvalues in formula
(6) should be reflection invariant only for integer or half-integer values ofε . In fact, the
final result (8) is invariant under the transformationε −→ −ε only in these cases.

The above discussion is only formal, because it is based on formula (6), that is
divergent. However, for anyM > 0, the spectrum{π(k + ε + 1

2 + iM)/T , k ∈ Z} of
the operator−i d

dt +A(t)+ iM in equation (7) or the spectrum{3j(k+ε+ 1
2), k ∈ Z} of the

operatordA + iλj (1+ d2
A/M

2)nj d2
A/M + iµjM in equation (12) are, as well as that of the

operator−i d
dt +A(t), gauge invariant and parity noninvariant, but for integer or half-integer
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values ofε. Therefore, the above discussion also holds for the regularized theory (7) or
(11) and is not only formal, but rigourous.

The physical origin of the 2+ 1 or higher-dimensional reflection anomaly may be
described in a similar way. On the one hand, we can blame the regularization prescription†.
On the other hand, we can realize that the reflection anomaly is an intrinsic property of the
pure odd-dimensional physical theories. Denote by/∂A ≡ γ µ(−i∂µ +Aµ(x)) the Euclidean
(2n + 1)-dimensional Dirac operator, whereγ µ = (γ µ)+ and {γ µ, γ ν} = 2δµν . It can be
trivially shown that the spectrum of the Dirac operator,σ(/∂A), verifiesσ(/∂Aφ ) = σ(/∂A),
but σ(/∂AT ) = −σ(/∂A). Therefore, as well as in the (0+ 1)-dimensional case, the spectrum
in not reflection invariant, but for special values of the gauge field for which the spectrum
is symmetric with respect to the origin.

The above discussion does not hold in even dimensions. Althoughσ(/∂AT ) = −σ(/∂A)
also in even dimensions, theγ 5 matrix prevents the appearance of the reflection anomaly
because the spectrum is symmetric with respect to the origin for anyAµ(xν).

5. Conclusions

The (0+ 1)-dimensional model (5) of Dirac fermions interacting with an Abelian gauge
field and defined over a circle has been quantized in the path integral formalism integrating
out the fermion modes for a given background gauge field (6).

The effective action has been calculated by computing the determinant of the operator
−i d

dt + A(t) regularized by means of the standard Pauli–Villars procedure prescribed in
equation (7) and by means of the generalized scheme (11).

As well as in 2+1 dimensions, with local regularizations, the effective coupling constant
keff may be any odd number, whereas with nonlocal regularizations,keff may be any real
number. Moreover, there are certain special nonlocal regularizations for whichkeff = 0.
If these nonlocal regularizations do not produce undesirable nonphysical effects such as
nonunitarity for example, we could speak about the absence of anomaly. Otherwise, we
could be dealing with a different theory, but this is still an open question [10].

Formally, the effective action (6) is gauge and reflection invariant (see equations (19)
and (20) respectively). However, the regularized effective action (17) (in particular (8)),
is not reflection invariant. In any odd-dimensional theory of Dirac fermions, the physical
origin of the reflection anomaly may be explained in two ways. One of them is based on
the regularization properties: parity-breaking terms in the regularization are responsible for
the reflection symmetry breaking. The other one is not based on the regularization: the
spectrum of the Dirac operator is not reflection invariant, but for special values of the gauge
field for which the spectrum is symmetric with respect to the origin.

The explicit form of the (0+ 1)-dimensional nonanalytic termh[A] has been obtained
in equation (10). It suggests the following possibility: the (2+ 1)-dimensional termh[A]
may be just the same one, whereε must be replaced by its (2+ 1)-dimensional partner
(i/2π)SCS(A). In fact, it may be trivially checked that Int((i/2π)SCS(A) + 1

2) verifies
all the properties enunciated in the introduction but one: ‘jumps±1 when, for varying
A, one eigenvalue of the Dirac operator vanishes’. Verification of this property and the
conjecture thath[A] = Int((i/2π)SCS(A) + 1

2) also holds in 2+ 1 dimensions deserve
further investigation.

† Regularizations considered in [1–9, 11] contain parity-breaking terms or break down the symmetry in some step
of their construction.
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