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Abstract. The(0+1)-dimensional field theory of Dirac fermions coupled to an external Abelian
gauge field is quantized in the path integral formalism. The imaginary part of the effective action,
which has many features in common with theH2)-dimensional effective action, is the sum

of a Zp-violating Chern—Simons term plus a cert&p-preserving and nonanalytic term related

to the integer part of the Chern—Simons action. The effective coupling constant of the theory
can be any real number depending on the regularization scheme. The physical origirZef the
anomaly in odd-dimensional gauge theories is analysed from a nonperturbative point of view.

1. Introduction

One of the most important features of the quantization of Dirac fermions i 13-
dimensional gauge theories is the appearance of the parity anomaly [1-5]. Properly speaking,
a parity transformation of the gauge fiedd (¢, =) in 2+1 dimensions is defined by means of
the transformatio , (1, x) — (Ao(t, £x1, Fx2), £A1(t, £x1, Fx2), FA2(t, £x1, Fx2)).
However, very often, ‘parity transformation’ is used in the literature for a different
Z, symmetry [6-8]: the reflection symmetry, defined Ry, (r, z) — —A,(—t, —x).
Therefore, although we should distinguish between parity and reflection symmetry, both are
usually referred to as ‘parity symmetry’. Obviously, the term becomes inadequate-fbr 0
dimensions and in what follows, we shall distinguish clearly between these two symmetries.
The effective action generated by the integration of the massless fermionic degrees of
freedom in (2+ 1)-dimensional gauge theories defined over a three-dimensional compact
manifold M is given by [1-8]

IMT'(A) = keft(—1Scs(A) + 2w h[A]) )

where Scs(A) is the (2+ 1)-dimensional Chern—Simons term
i
Scs(A) = —[ THAANDA+3ANANA)
4 M

and h[A] is a certain nonanalytic function of the gauge fiedld: M — Lie algebra of

U (1) or SU(N). However, the literature [1-6], and especially the recent literature [7-9, 11],
about the quantization of (2 1)-dimensional Dirac fermions contains heterogeneous and
sometimes contradictory information. The major controversy is related to the value, of
which may depend on the regularization method prescribed for its calculation. In the non-
Abelian case, some authors obtain [143} = +21, whereasket = p/2 is obtained in [8],
where p may be any integer number. Moreover, in [7] it is argued thatmay be any

real number depending on the parameters of the regularization. The controversy is similar
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in the Abelian case [4,9]. As a consequence, some authors propose the absence of parity
(and reflection) anomaly in the theory [7-9].

On one hand, the Chern-Simons action is antisymmetric under a reflection
transformation and, under a gauge transformagionM — SU(N) of the gauge field,
A— A% =g 1Ag —ig71dg,

Scs(A) — Scs(A®) = Scs(A) — 2nrwi (2)
wheren is the winding number of. On the other hand, although the explicit form/gf]
is unknown, some properties of this term are well established [2, 7]. It is integer and jumps
41 when, for varyingA, one eigenvalue of the Dirac operator vanishes. Moreover, the
gauge and reflection transformationsigfA] are given by

h[A%] = h[A]l +n 3)
and

h[—A] = —h[A] = h[A] & 2|n[A]| (4)
respectively. Therefore, using (2)—(4) we see that exp(r) is gauge invariant, but not
reflection invariant.

The Chern-Simons term may be obtained by means of perturbation theory, but the
term h[A] is not generated radiatively. The existence and physical origin of a k§rth
verifying the above properties has been shown by Redlich in [2] by using the Atiyah—Singer
theorem in 3+ 1 dimensions. The necessity of the presence of this term in the imaginary
part of the effective non-Abelian action has been also argued in [7] in order to assure the
gauge invariance of exp(A), but the explicit form and physical origin of the terfA] is
unknown. The purpose of this paper is to calculate explicitly the (Q-dimensional term
h[A], compare the ambiguities of the {01)-dimensional coefficientes with those of the
(2 + 1)-dimensional one and analyse the physical origin of the reflection anomaly in odd
dimensions. The aim of this study is to shed some light on the possible realizations of the
more physically interesting (2 1)-dimensionak[A] term and on the physical origin of the
discrete anomalies.

In the next section, the effective action generated by the integration of Dirac fermions
interacting with an Abelian gauge field and defined in aH@)-dimensional compact
manifold is calculated exactly by means of a standard Pauli—Villars regularization. The
nonanalytic ternk[ A] is obtained explicitly. In section 3, the ambiguitieskigy are analysed
by means of a generalization of the Pauli-Villars scheme. In sedtephysical explanation
about the origin of the reflection anomaly ir-Q dimensions (in odd dimensions in general)
is proposed. Some conclusions and a few comments are postponed to section 5.

2. The model: Dirac fermions in the circle

Consider a (8 1)-dimensional system [12] of massless fermions interacting with an Abelian
gauge field at finite timel’ (finite temperature). The classical interaction action of this
system is given by

T d
SA ¥, y) = /T Y1) <_iE + A(t)> ¥ (1) dr ®)

whereA(t) : ST — R is the gauge field ang (¢) : ST — C is the fermion field. The
gauge field verifies periodic boundary conditiodsy + 27T) = A(¢t) whereas the fermion
field verifies antiperiodic boundary conditiong(t + 2T) = —yr(¢).

1 By ST we mean the circle of length72
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The quantum effects of the fermions on the gauge field are encoded in the effective
actionI"(A). It is defined by means of the integration of the fermionic degrees of freedom
and normalized to 1 foA = 0,

S [ 8yroypeSAv ) detl-ig + A1)
— [oyrsye SOV T det[-id

where [ §y/*8y means that the integrand ¥4V"¥) must be integrated over all the fields
¥* andy verifying the antiperiodic boundary conditions mentioned above.

Therefore, in order to calculate the effective actibiid), we need to know the
eigenvalues of the (& 1)-dimensional Dirac operatopi% + A(t). It is well known
that the eigenvalues of this operator acting on fermions defined over the Sfrclre
ME =ak+e+ %)/T, k € Z, wheree is the (0+ 1)-dimensional Chern—Simons action,

1 T
= — A(r) dr.
an_T (1) dr

Inserting A, (¢) into the right-hand side of (6) we verify that this expression is divergent.
Therefore, we must introduce a regularization scheme. In order to explore possible
ambiguities inkes We must consider a very general regularization scheme, but this is
postponed to the next section. Now, in order to better understand the origin of the
nonanalytic termi[ A], we introduce a standard Pauli-Villars regularization,

W _ i deti-id + A()]  det[-id +im]
Moo det-id]  det[-ig + A(r) +iM]

5 -1
im ] k+e+d|[k+e+d+im
Mooy | k+3 k+3+iM

A}[nw[(2€+1)]f[1<l+ki%)(1— ki%ﬂ
e -1
X[B(l+k+;+iM><l_k_;_iMﬂ : )

Duneet al [12] have computed the second quotient of determinants in the first line of the
above equation for arbitrary/. The limits M — 0 andM — oo of that calculation imply

that the first bracket in the right-hand side of (7) equalg-€as), whereas the second one
equals e'™¢ + O(M~1). Therefore,

(6)

&' = |cogre)|(—1) ™2 (—1) ®)
and the imaginary part of the effective action reads
IMI(A) = 7(—€ + Int(e + 3)). 9)

We can identify clearly here the explicit (0 1)-dimensional form of the nonanalytic term
h[A]. It is given by

h[A] = Int(e + ). (10)

It has been generated by the determinant of the physical Dirac fermion and obviously, it
cannot be found by means of a perturbative expansian idnder a gauge transformation
g?® : §T — U(1) of winding number, e —> e+n and under a reflection transformation,

e —> —e. Therefore, the term Ix¢ + %) verifies all the properties mentioned in the
introduction for the (2+ 1)-dimensional case: it is integer, transforms under a gauge
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transformation in the form (3), under a parity transformation in the form (4) and jumps
one unity when, for varying, one eigenvalug + ¢ + % vanishes. The other term of the
right-hand side of the above equation is just the Chern—Simons action multipliedrby

and was generated by the Pauli—-Villars determinant. It can be easily verified that this term
is just what we obtain in perturbation theory. Therefore, as well as4nl2dimensions,

the radiative corrections only pick up the Chern—Simons term df (). Nevertheless,

the imaginary part (9) of the (@ 1)-dimensional effective action agrees with the{2)-
dimensional non-Abelian one if we change: + Int(e + %) by its (24 1)-dimensional
partner—(i/2mw)Scs(A) + h[A] (kett = % in the non-Abelian case for (2 1)-dimensional
Pauli—Villars regularizations).

3. Ambiguities in the reflection anomaly

In order to analyse the ambiguities in the4Q)-dimensional coefficientes, we consider

now the regularization method introduced in [7]. This scheme has shown the ambiguities in
the (2+ 1)-dimensional coefficientess, generalizing the results obtained by other methods
[1-6,8-9, 11]. Itis a gauge invariant generalization of the Pauli-Villars scheme that contains
not only pseudoscalar couplings between the fermions and the gauge field, but also scalar
couplings. This is achieved by means of high derivatives. #p0dimensions it reads,

N deti [dA + i),,»% (1+ ;’4—3*2) gut i/JLjM]

e™@ = lim v G (11)
M0 det [do -+ % (14 5 ) +inM |
where we have denoted
d
dy = —i— + AQ®).
A o )
so =1, ==x1forj =12...,N, 2n; are integer numbers amd and p; are real

numbers withug = 0. In order to assure that (11) is a true regularization, we must
find the Pauli-Villars conditions that mak&(A) finite for finite M. All the determinants
involved in the regularization (11) are formally gauge invariant, therefore, as in standard
Pauli-Villars regularizations, finiteness of every couple of quotients in the above formula
is enough to guarantee gauge invariance. It is assured by cha¥saulyl ands; = (—1)/,

j = 01...,N. If we denote byA;(k + ¢ + %) the eigenvalues of the operator
da +ikj(1+d5/MP)ud3 /M +iuM,

Aj(k)5%|:k+i%kz<l+ A’;—ZZ)IHM,-M} (12)
and each consecutive couple of quotients of determinants in (11) may be written
detlds + ir;(1+d2/M>"d3 /M +ip;M]
detldo + ir; (1 + d5/M?)md3/M + i M]
y detldo + irj 1 (1 + do/M?)"+1d2 /M + ip; 1 M]
detids + irj1(1+d3/M2)yi+d3 /M + i1 M]
Ajk+e+3)  Ajpatk+3)
iz Njk+3) Ajatk+e+3)
o Ajk+Frade+3) Ao+ 3)
B g Ajtk+3) Aji1(k + Frade + 3))
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_im Lo Ajk+Frade +3)  Ajjak+3)
S L-oo 1 L Ajk+3) Aji1(k + Frade + 3))

(13)

In the last equality we have spli + % into its integer and fractional parts, + % =
Int(e + %) + Frade + %). Therefore, the contribution of every one of these couple of
quotients to the imaginary part of the effective actiog) is given by
m | {det[dA +irj(L+d3/M>"MdA /M + i M)

detldo +ix; (1 + d3/M?)"id5/M + iw; M]

y detldo + irj 1 (1 + d2/M?)"+1d2 /M +ip; 1 M] }
detldy + i 1(1+ d2/M2)"ind2 /M +ipj 1 M)
= L"lnoo[rf'(L) = Ija(L)]

where
L ) 1 v 1
Fj (L) = Z tanﬁl m AJ (k + Fraqe + i)) — tan*l M (14)
k=—L ReA;(k + Frade + 3)) ReA;(k + 3)
and

ImA; (k)  Aj(k/M)*(L+ (k/M))"Y + p;
ReA;k) k/M '

For largeM, we can substitute the discrete variakle\d by a continuum variable: and
the summation in (14) by times an integral inx,
—1+Frac(e+2) L+Frac(e+z)

1/2
M
F] (L) = M{ /—L+Fraqs+%) /;raQeJr ) / / }
M

1 ImA;(x) -1
x tan <—ReAj(x)>dx+O(M )

ReA; (L) ReA;(—L) ReA;(0")
- (1m A, 00 Ly _ 1 -1
+ tan (ReAj(O))] (Frade +3) — 3) + oM™
= mk;(Fraqe + %) — %) +o(L L, MY

where
K = 0 + w;i /|l ?f i #0 (15)
0; if u; =0
/1A ] if nj >— 2a.ndk #0
0, = { 2/m)tant(x)) if nj = _g (16)
0 if nj < —é orx; =0

and we have chosen tal(x;) € (—7/2,7/2]. Then, the quotient (13) of thg¢th and
(j + Dth determinants contributes to the imaginary pari’¢f) with the term

7 (kj1 — k) (=€ + Int(e + 3)).

It can be easily verified that the termr (k;11 — k)€ is just what we obtain in perturbation
theory. Radiative corrections only pick up the Chern—Simons term df (). The term
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w(kjt1 — kj)Int(e + %) is a purely nonperturbative effect. Collecting all the contributions
of these couples of determinants we obtain

IMT(A) = keitr (—€ + Int(e + 3)) (17)
where
N ‘ )
kett = =60 — ) _(=1)’ (ﬁ + 9,~> : (18)
= 4

This (0+ 1)-dimensional coefficient.s equals the (2- 1)-dimensional one in equation (1)
obtained in [7]. Therefore, the ambiguities in theH@)-dimensional reflection anomaly are
the same as the ambiguities in theH2)-dimensional parity anomaly.

For N = 1 andig = A1 = O we obtain the standard Pauli-Villars residt = +1
obtained also in 2- 1 dimensions in [2] in the Abelian cask.t = :t% in the non-Abelian
case). It is obtained also in2 1 dimensions in [3-5] by using-function regularization
and in [11] by using; -function regularization.

For arbitraryN andn; # —% we obtain thatkes may be any odd number. This result
is also obtained in 2- 1 dimensions in [8] by using several Pauli—Villars fields and in [6]
in the lattice.

If somen; = —%, we obtain thatkes may be any real number, even @¢ = O is
also obtained in 2+1 dimensions in [9] by using an infinite number of Pauli—Villars fields.
Nevertheless, regularization (11) with some= —% or the infinite Pauli-Villars scheme
proposed in [9] are nonlocal regularizations. Then, when using these regularizations, the
absence of undesirable nonphysical effects such as nonunitarity should be yet analysed
before talking about absence of parity or reflection anomaly.

4. Physical origin of the reflection anomaly

In order to analyse the physical origin of the{01)-dimensional reflection anomaly and,
in general, the reflection anomaly in odd dimensions, we must compare the classical and
guantum symmetries of the theory.
The classical action (5) is invariant under a reflection transformation,
A@t) — AT(t) = —A(—1)
Vv — 0=y
A S A OESNAC)
and under & (1)-gauge transformation%”,

A—>A¢=A+d—¢
dr
vyt =y

Using the invariance of the action (5) under these transformations, we may deduce from
the functional integral definition of (A) in (6) the formal identities

gh(A?) _ @) (19)
and

& = g™, (20)
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However,e — —e under a parity transformation and — ¢ + n under a gauge
transformation of winding number. Therefore, the explicit calculations ©f(A) in (8) or
ImI'(A) in (17) show that the identity (19) is not only formal, but true. In contrast, the
identity (20) is no longer valid and this fact constitutes the reflection anomaly.

Responsibility for the anomaly is often attributed to the regularization. Certainly, the true
properties of the quantum theory may depend on the regularization prescription introduced
to properly define the theory and may not coincide with the formal properties deduced before
introducing the regularization. This is just what happens here and is argued more precisely
in the following way. The gquantum action defined in (6) has not a precise sense because
it is divergent and therefore, the identities (19) and (20) are nothing but formal properties.
The effective action is properly defined in (11) once the regularization (generalized Pauli—
Villars) has been introduced (standard Pauli-Villars regularization (7) is a particular case
with N =1, u; =1 andig = A; = 0). Formula (11) may also be written in the form

* N 18 = So(A Y )= N (1) S; (A ¢ 1)
& = |im J8yrsy i dx;bx;e -

M—o00 f8w*3wH;V:lsx;kaxje—So(O,ll’*J/f)—Z,l-vﬂ(—l)jS/(O’Xf,X/)

where
. . . dd di\"
so<A,w,w>=/_va O] ds+in0 (1+2) [y a (21)

is a generalization of the interactiditA, v*, v) between the gauge fieldl and the fermion
field v and

T 2 2\
Sj(A’Xj*»Xj):/ X;k(t) |:dA+i)»deA <1+ %) +i/LJ‘M:| X (@) dr (22)
-T
is a generalization of the classical Pauli—Villars interaction action between the gauge
field and a heavy ghost fermiom;(¢) of large massM. Actions So(A, ¥*, ¥) and

Sj(A, xj', x;) are gauge invariant, but not reflection invariant: the term,sMX;"Xj,
irowd3 (1 + d3/M?)oy/M and i x;d3(1 + d3/M?)" x;/M spoil the formal reflection
symmetry (20) of the theory.

Therefore, under this point of view, the anomaly is an ultraviolet effect: the high modes
(n(k+e-|—%)/T for k large) of the spectrum make the determinant of the opereith+A(t)
divergent and the ghost modegtl(k + €+ %) are introduced to attenuate this ultraviolet
behaviour. The price to pay is that the ghost modes spoil the reflection symmetry.

However, we can argue that the reflection anomaly is an intrinsic property of the pure
(0 + 1)-dimensional physical theory. For that purpose we just need to study the behaviour
under gauge and reflection transformations of the spectiyi) = n(k+e+%)/T, ke Z}
of the operator—i% + A(t) definingI"(A) in (6). This spectrum is represented in the left
vertical line of figure 1 for a generie (for a generic gauge field (¢)).

Under a gauge transformatiol#©@ of winding number:, the Chern—Simons tera(A)
transforms intoe (A) + n. Then, the only effect of the gauge transformation is a shifi of
positions in the eigenvaluegy (k + € + %)/T, keZ} — {(nk+e+ % +n)/T,k € Z}
and therefore, the spectrum of the operatcbr(% + A(r) remains invariant (the movement
of the eigenvalues for the particular casenof 2 is represented in figure 1). Hence, the
determinant of—id% + A(t) in formula (6) should be gauge invariant and in fact, the final
calculation (8) is gauge invariant.

On the other hand, under a reflection transformatiq@) — —e(A), the spectrum
transforms in the formz (k + ¢ + %)/T, keZ} — {mk—ec+ %)/T, k € Z}. Therefore,
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A€ A (E+2)

Figure 1. The spectrum of the operatorid% + A(t) is shiftedn positions under a gauge
transformation of winding number. This picture shows the spectrum transformationifes 2.

A (=3/2) A, (3/2) A -1 (D
+ : ¢ ¢
: i k=44

'

K.—_'3 ;

1
)
¥

K=4$

K=2

K=1
€ -4

Figure 2. The spectrum of the operateri% + A(t) is reflection invariant only for integer or
half-integer values o€ for which the spectrum is symmetric with respect to the origin. These
figures represent the spectrum evolution doe —% ande = —1 respectively wher — —e.

the effect of the reflection transformation is a shift of the eigenvalues a quantiy72
Then, the spectrum is not invariant under this transformation, urleéssan integer or
half-integer number (the transformation of the spectrum for the particular cases efg
ande = —1 is represented in figure 2). Then, the product of these eigenvalues in formula
(6) should be reflection invariant only for integer or half-integer values ofin fact, the
final result (8) is invariant under the transformatior— —e only in these cases.

The above discussion is only formal, because it is based on formula (6), that is
divergent. However, for anyf > 0, the spectrum{z(k + € + % +iM)/T, k € Z} of
the operator—i% + A(t)+iM in equation (7) or the spectrufm; (k +¢€ + %), k € Z} of the
operatord, + ixj(1+d3/M?)"d%3/M +in; M in equation (12) are, as well as that of the
operator—i% + A(t), gauge invariant and parity noninvariant, but for integer or half-integer
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values ofe. Therefore, the above discussion also holds for the regularized theory (7) or
(11) and is not only formal, but rigourous.

The physical origin of the 2- 1 or higher-dimensional reflection anomaly may be
described in a similar way. On the one hand, we can blame the regularization presgription
On the other hand, we can realize that the reflection anomaly is an intrinsic property of the
pure odd-dimensional physical theories. Denotedhy= y*(—id, + A, (x)) the Euclidean
(2n + 1)-dimensional Dirac operator, whepe* = (y*)* and {y*, y"} = 2§,,. It can be
trivially shown that the spectrum of the Dirac operate(d,), verifieso (§46) = o(#,4),
buto (#,r) = —o(#4). Therefore, as well as in the {91)-dimensional case, the spectrum
in not reflection invariant, but for special values of the gauge field for which the spectrum
is symmetric with respect to the origin.

The above discussion does not hold in even dimensions. Altheddlhy) = —o(3,4)
also in even dimensions, the® matrix prevents the appearance of the reflection anomaly
because the spectrum is symmetric with respect to the origin fordauy, ).

5. Conclusions

The (0+ 1)-dimensional model (5) of Dirac fermions interacting with an Abelian gauge
field and defined over a circle has been quantized in the path integral formalism integrating
out the fermion modes for a given background gauge field (6).

The effective action has been calculated by computing the determinant of the operator
—id—d, + A(t) regularized by means of the standard Pauli-Villars procedure prescribed in
equation (7) and by means of the generalized scheme (11).

As well as in 2+1 dimensions, with local regularizations, the effective coupling constant
ket may be any odd number, whereas with nonlocal regularizatigsmay be any real
number. Moreover, there are certain special nonlocal regularizations for wihick 0.

If these nonlocal regularizations do not produce undesirable nonphysical effects such as
nonunitarity for example, we could speak about the absence of anomaly. Otherwise, we
could be dealing with a different theory, but this is still an open question [10].

Formally, the effective action (6) is gauge and reflection invariant (see equations (19)
and (20) respectively). However, the regularized effective action (17) (in particular (8)),
is not reflection invariant. In any odd-dimensional theory of Dirac fermions, the physical
origin of the reflection anomaly may be explained in two ways. One of them is based on
the regularization properties: parity-breaking terms in the regularization are responsible for
the reflection symmetry breaking. The other one is not based on the regularization: the
spectrum of the Dirac operator is not reflection invariant, but for special values of the gauge
field for which the spectrum is symmetric with respect to the origin.

The explicit form of the (O+ 1)-dimensional nonanalytic terif A] has been obtained
in equation (10). It suggests the following possibility: the{24)-dimensional ternk[A]
may be just the same one, wheremust be replaced by its @ 1)-dimensional partner
(i/27)Scs(A). In fact, it may be trivially checked that I(i/27)Scs(A) + %) verifies
all the properties enunciated in the introduction but one: ‘jurdfdswhen, for varying
A, one eigenvalue of the Dirac operator vanishes’. Verification of this property and the
conjecture thati[A] = Int((i/27)Scs(A) + %) also holds in 2+ 1 dimensions deserve
further investigation.

1 Regularizations considered in [1-9, 11] contain parity-breaking terms or break down the symmetry in some step
of their construction.
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